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Abstract
Infinite series

∑∞
n=1

(α/2)n
n

1
n! 1F1(−n, γ, x2), where 1F1(−n, γ, x2) =

n!
(γ )n

L
(γ−1)
n (x2), appear in the first-order perturbation correction for the

wavefunction of the generalized spiked harmonic oscillator Hamiltonian
H = − d2

dx2 + Bx2 + A
x2 + λ

xα
, 0 � x < ∞, α, λ > 0, A � 0. It is proved that

the series is convergent for all x > 0 and 2γ > α where γ = 1 + 1
2

√
1 + 4A.

Closed-form sums are presented for these series for the cases α = 2, 4 and 6.
A general formula for finding the sum for α

2 = 2 + m,m = 0, 1, 2, . . . in terms
of associated Laguerre polynomials is also provided.

PACS numbers: 02.30.Gp, 03.65.Db, 03.65.Ge

1. Introduction

Aguillera-Navarro and Guardiola [1] encounter some difficulties inherent in connection with
attempts to derive the first-order perturbation expansion of the wavefunction of the spiked
harmonic oscillator Hamiltonian

H = − d2

dx2
+ x2 +

λ

xα
0 � x < ∞ α, λ > 0 (1.1)

even for the case α = 2, where a complete exact solution is also available. The reason for
these difficulties lies in computing infinite series of the type

∞∑
n=1

(
α
2

)
n

n

1

n! 1F1
(−n; 3

2 ; x2) (1.2)

where 1F1 stands for the confluent hypergeometric function defined by

1F1(−n; b; y) =
n∑

k=0

(−n)k

(b)k

yk

k!
= n!

(b)n
L(b−1)
n (y) (1.3)
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in terms of the associated Laguerre polynomials L(b−1)
n (y), and (a)n the shifted factorial (or

Pochhammer symbols) defined by

(a)0 = 1 (a)n = a(a + 1)(a + 2) · · · (a + n − 1) = �(a + n)

�(a)
n = 1, 2, . . . .

(1.4)

Recently, the present authors studied a more general Hamiltonian known now as the
generalized spiked harmonic oscillator Hamiltonian [2–5]

H = H0 + λV = − d2

dx2
+ Bx2 +

A

x2
+

λ

xα
0 � x < ∞ α, λ > 0 A � 0 (1.5)

defined on the one-dimensional space (0 � x < ∞) with eigenfunctions satisfying Dirichlet
boundary conditions, that is to say, with wavefunctions vanishing at the boundaries. Herein
equation (1.1) appears as a special case (A = 0, B = 1). They found that the matrix elements
of the operator x−α, with respect to the exact solutions of the Gol’dman and Krivchenkov
Hamiltonian H0, namely,

ψn(x) = (−1)n

√
2B

γ

2 �(n + γ )

n!�2(γ )
xγ− 1

2 e−
√
B

2 x2

1F1(−n, γ,
√
Bx2) (1.6)

with exact eigenenergies

En = 2
√
B(2n + γ ) n = 0, 1, 2, . . . γ = 1 + 1

2

√
1 + 4A (1.7)

are given explicitly by the expressions

x−α
mn = (−1)n+mB

α
4

(
α
2

)
n

(γ )n

�(γ − α
2 )

�(γ )

√
(γ )n(γ )m

n!m!
3F2

(
−m, γ − α

2
, 1 − α

2
; γ, 1 − n − α

2
; 1

)
(1.8)

and valid for all values of the parameters γ and α such that α < 2γ . Furthermore, the matrix
elements of the Hamiltonian (1.5) are given by

Hmn = 〈m|H |n〉 ≡ 2
√
B(2n + γ )δnm + λ(−1)m+nB

α
4

√
(γ )n(γ )m

n!m!

�
(
γ − α

2

) (
α
2

)
n

(γ )n�(γ )

× 3F2

(
−m, γ − α

2
, 1 − α

2
; γ, 1 − α

2
− n; 1

)
. (1.9)

Of particular interest are the elements

H0n = λ(−1)nB
α
4

√
(γ )n

n!

�
(
γ − α

2

)
�(γ )

(
α
2

)
n

(γ )n
n �= 0. (1.10)

It is known that the first correction to the wavefunction by means of standard perturbation
techniques leads to

ψ
(1)
0 (x) =

∞∑
n=1

H0n

E0 − En

ψn(x) (1.11)

where H0n and ψn (x) are given by equations (1.10) and (1.6), respectively. Thus, the first
correction to the wavefunction of the Hamiltonian (1.5) is given by

ψ
(1)
0 (x) = −B

α
2 + γ

4 − 1
2

2
√

2

�
(
γ − α

2

)
�(γ )

√
�(γ )

xγ− 1
2 e−

√
B

2 x2
∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ,

√
Bx2). (1.12)
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The purpose of this paper is to find closed-form sums for the infinite series appearing in
equation (1.12), namely,

∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n; γ ; x2) (1.13)

where 2γ > α, α = 2, 4, 6, . . . and we set B = 1, for simplicity. Because of equation (1.3),
the results of this paper can be expressed equally well in terms of the associated Laguerre
polynomials. The importance of closed-form sums for the infinite series (1.13) is that they
help us to understand the abnormal behaviour of the standard, weak coupling, perturbation
theory [1] for the singular Hamiltonians (1.1). Such infinite series were investigated earlier by
the present authors [2], where they proved, in the case α < 2, by means of the inverse Laplace
transform, that

∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ, x2) = �(γ )

2π i

α

2

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)

× 3F2

(
1 +

α

2
, 1, 1; 2, 2; 1 − x2

t

)
dt c > 0 (1.14)

where |1 − x2

t
| < 1, which is indeed an important condition to insure the convergence of the

series 3F2 that appears on the right-hand side of (1.14). The functions 3F2 and 1F1, mentioned
above, are special cases of the generalized hypergeometric function

pFq(α1, α2, . . . , αp; β1, β2, . . . , βq; z) =
∞∑
k=0

∏p

i=1(αi)k∏q

j=1(βj )k

zk

k!
(1.15)

where p and q are non-negative integers and β j (j = 1, 2, . . . , q) is such that it is not equal
to zero or a negative integer. If the series does not terminate (one of αi, i = 1, 2, . . . , p, is a
negative integer), then the series, in the case p = q + 1, converges or diverges according to
whether |z| < 1 or |z| > 1. For z = 1, on the other hand, the series is convergent, provided∑q

j=1 βj − ∑p

i=1 αi > 0. This paper is organized as follows: in section 2 we demonstrate that
the infinite series on the left-hand side of equation (1.14) converges for all x > 0 and γ > α

2 .
Furthermore, the integral representation is still valid in such cases. In section 3 we prove that
in the case α = 2, we have

∞∑
n=1

(1)n
n n!

1F1(−n; γ ; x2) = ψ(γ ) − log x2 γ > 1

while in the case α = 4, we have
∞∑
n=1

(2)n
n n!

1F1(−n; γ ; x2) = ψ(γ ) − log x2 +
γ − 1

x2
− 1 γ > 2

and for the case α = 6
∞∑
n=1

(3)n
n n!

1F1(−n; γ ; x2) = ψ(γ ) − log x2 +
γ − 1

x2
− 3

2
+
(γ − 1)(γ − 2)

2x4
γ > 3.

In section 4 we prove our main result that for α
2 = 2 + m,m = 0, 1, 2, . . .

∞∑
n=1

(
α
2

)
n

n n!
1F1(−n; γ ; x2) = ψ(γ ) − log x2

− (m + 1)
m∑
k=0

(−m)k

(k + 1)2

(
− 1

x2

)k [
L
γ−1−k

k (x2) − (γ − 1)

x2
L
γ−2−k

k (x2)

]
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where L(a)
n (·) stands for the well-known associated Laguerre polynomials. An interpretation

for the first-order correction of the wavefunction (1.12) as x → 0 and some further remarks
are given in section 5.

2. Integral representation and the convergence problem

In order to evaluate the sum in equation (1.13) for α > 0 and 2γ > α, we require a
suitable integral representation of the confluent hypergeometric function 1F1(−n, γ, x2) over
an appropriate contour, in order to interchange summation with integration and thereby readily
conclude the absolute convergence of the series just mentioned. We find the inverse Laplace
transform (integral) representation [6, p 116, formula (3)]

1F1(a, γ, x
2) = �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)−a

dt (2.1)

under the conditions Re(γ ) > 0, c > 0,
∣∣arg

(
1 − x2

c

)∣∣ < π (which is clearly true for x real) to
be the most advantageous for achieving this end.

Now turn to the evaluation of the summation in terms of the representation (2.1) written
for a = −n, namely,

1F1(−n, γ, x2) = �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)n

dt n = 0, 1, 2, . . . (2.2)

which substituted into the summation of equation (1.13) yields
∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ, x2) = (2π i)−1 �(γ )

∞∑
n=1

(
α
2

)
n

n

1

n!

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)n

dt

= (2π)−1 �(γ )

∞∑
n=1

(
α
2

)
n

n

1

n!

∫ ∞

−∞
e(c+iy)(c + iy)−γ

(
1 − x2

c + iy

)n

dy. (2.3)

The evaluation of this last infinite sum, involving integrations over the interval (−∞, ∞), is
achieved by examining the summation of the integrand, namely,

∞∑
n=1

(
α
2

)
n

n

1

n!
e(c+iy)(c + iy)−γ

(
1 − x2

c + iy

)n

= e(c+iy)(c + iy)−γ

∞∑
n=1

(
α
2

)
n

n

1

n!

(
1 − x2

c + iy

)n

(2.4)

and demonstrating that it has an L1(−∞,∞)-majorant. Hence, the existence of such a
majorant will permit us to interchange summation with integration, as a result of the Lebesgue
dominated convergence theorem. To arrive at such a majorant, we continue by noting that

∞∑
n=1

(
α
2

)
n

n

1

n!

(
1 − x2

c + iy

)n

=
∞∑
n=0

(
α
2

)
n+1

n + 1

1

(n + 1)!

(
1 − x2

c + iy

)n+1

= α

2

(
1 − x2

c + iy

) ∞∑
n=0

(
α
2 + 1

)
n

(2)n

(1)n
(2)n

(
1 − x2

c + iy

)n

(2.5)

= α

2

(
1 − x2

c + iy

) ∞∑
n=0

(
α
2 + 1

)
n
(1)n(1)n

(2)n(2)n

(
1 − x2

c+iy

)n

n!

= α

2

(
1 − x2

c + iy

)
3F2

(
α

2
+ 1, 1, 1; 2, 2; 1 − x2

c + iy

)
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as consequence of (a)n+1 = a(a + 1)n, n! = (1)n and (n + 1)! = (2)n. The series 3F2, in
equation (2.5), is convergent provided that

∣∣1 − x2

c+iy

∣∣ < 1. Now, since

1 − x2

c + iy
= 1 − x2(c − iy)

c2 + y2
= 1 − x2c

c2 + y2
+ i

x2y

c2 + y2

for which ∣∣∣∣1 − x2

c + iy

∣∣∣∣
2

= 1 − x2(2c − x2)

c2 + y2
< 1

provided c is chosen large enough, i.e. x2 < 2c. For such c we shall always have

0 < 1 − x2(2c − x2)

c2 + y2
< 1 ∀y ∈ R. (2.6)

Furthermore, the series 3F2, in equation (2.5), is absolutely convergent for
∣∣1 − x2

c+iy

∣∣ = 1,
provided that α < 2 as a result of equation (1.15). We now return to the majorization of
summation (2.4), which entails

∞∑
n=1

(
α
2

)
n

n n!
e(c+iy)(c + iy)−γ

(
1 − x2

c + iy

)n

= ec+iy|c + iy|−γ α

2

(
1 − x2

c + iy

)

× 3F2

(
α

2
+ 1, 1, 1; 2, 2; 1 − x2

c + iy

)
< A(α, c)|c + iy|−γ (2.7)

where the convergenceof 3F2 and also the condition
∣∣1− x2

c+iy

∣∣ < 1 were made use of. The most
important aspect of inequality (2.7) is the appearance of the L1(−∞,∞)-function |c + iy|−γ

of variable y majorizing the series
∞∑
n=1

(
α
2

)
n

n n!

∣∣∣∣∣e
√
B(c+iy)(c + iy)−γ

(
1 − x2

c + iy

)n
∣∣∣∣∣

and this aspect justifies the evaluation of summation (2.4) by means of the Lebesgue dominated
convergence theorem. Thus we specifically have

∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ, x2) = �(γ )

2π i

∞∑
n=1

(
α
2

)
n

n

1

n!

∫ ∞

−∞
e(c+iy)(c + iy)−γ

(
1 − x2

c + iy

)n

i dy

= �(γ )

2π i

∫ ∞

−∞
e(c+iy)(c + iy)−γ

[ ∞∑
n=1

(
α
2

)
n

n

1

n!

(
1 − x2

c + iy

)n
]

i dy

= �(γ )

2π

α

2

∫ ∞

−∞
e(c+iy)(c + iy)−γ

(
1 − x2

c + iy

)

× 3F2

(
1, 1, 1 +

α

2
; 2, 2; 1 − x2

c + iy

)
dy (2.8)

which is an effective straightforward and precise determination of the summation∑∞
n=1

(α/2)n
n

1
n! 1F1(−n, γ, x2) in terms of integrals of higher order hypergeometric function

for arbitrary α < 2γ . However, by utilizing t = c + iy we reconvert the last expression of
relation (2.8) to the inverse Laplace transform format, namely,

∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ, x2) = �(γ )

2π i

α

2

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)

× 3F2

(
1, 1, 1 +

α

2
; 2, 2; 1 − x2

t

)
dt (2.9)

valid for all α < 2γ . The computation of this expression is carried out in the next section.
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3. Closed-form sums

Lemma 1. For γ > 1
∞∑
n=1

1

n
1F1(−n, γ, x2) = ψ(γ ) − log x2. (3.1)

Proof. For α = 2 and (1)n = n!, equation (2.9) leads to
∞∑
n=1

1

n
1F1(−n, γ, x2) = �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)
3F2

(
2, 1, 1; 2, 2; 1 − x2

t

)
dt

= �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − x2

t

)
2F1

(
1, 1; 2; 1 − x2

t

)
dt

It is known, however, that

2F1(1, 1; 2; z) = − 1
z

log(1 − z) |z| < 1

Thus, for z = 1 − x2

t
, we have

∞∑
n=1

1

n
1F1(−n, γ, x2) = −�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ log

(
x2

t

)
dt

= − log x2 �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ dt +

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ log t dt .

The first integral on the right-hand side can be computed by means of the reciprocal of the
�-function [6, p 17, formula (5)] or by means of the inverse Laplace transform of f (t) = t−γ

for γ > 0

[�(γ )]−1 = 1

2π i

∫ c+i∞

c−i∞
et t−γ dt c > 0 γ > 0. (3.2)

Further, by differentiating equation (3.2) with respect to γ , we get

ψ(γ )

�(γ )
= �′(γ )

[�(γ )]2
= 1

2π i

∫ c+i∞

c−i∞
et t−γ log(t) dt c > 0 γ > 0 (3.3)

where ψ(γ ) is the digamma function defined as ψ(γ ) = d
dγ log�(γ ). Therefore,

∞∑
n=1

1

n
1F1(−n, γ, x2) = ψ(γ ) − log(x2) for γ > 1

as required. �
The result of lemma 1 is not new indeed, and it was proved earlier by Toscano [7] by

means of extensive use of calculus of finite difference. Toscano’s result [7], however, was
given in terms of associated Laguerre polynomials L(γ )

n (·) where he proved that
∞∑
n=1

(n − 1)!

�(n + γ )
L(γ−1)
n (y) = 1

�(γ )
[ψ(γ ) − log y]. (3.4)

For comparison, we use the relation between the confluent hypergeometric function

1F1(−n; γ + 1; ·) and the associated Laguerre polynomials L(γ )
n (·), namely,

1F1(−n, γ + 1, ·) = �(n + 1)�(γ + 1)

�(n + γ + 1)
L(γ )
n (·). (3.5)
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Thus,
∞∑
n=1

1

n
1F1(−n, γ, x2) = �(γ )

∞∑
n=1

(n − 1)!

�(n + γ )
L(γ−1)
n (x2) (3.6)

and this leads to the same results as lemma 1. In other words, lemma 1 gives an independent
proof of Toscano’s result [7].

In order to find closed sums for equation (2.9) for positive even numbers of α, we start
with the reduction formula for 3F2(a, b, 1; c, 2; z) as given by Luke [6, p 111, formula (40)]:

z 3F2(a, b, 1; c, 2; z) = (c − 1)

(a − 1)(b − 1)
[2F1(a − 1, b − 1; c − 1; z)− 1] |z| < 1.

(3.7)

The purpose of the following lemma is to find the limit of Luke’s identity as b → 1.

Lemma 2. For a �= 1, c �= 1 and
∣∣ z
z−1

∣∣ < 1,

z 3F2(a, 1, 1; c, 2; z) = (c − 1)

(a − 1)

[
(c − a)

(c − 1)

(
z

z − 1

)

× 3F2

(
c − a + 1, 1, 1; c, 2; z

z − 1

)
− log(1 − z)

]
. (3.8)

Proof. From Pfaff’s transformation [8] for 2F1,

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z − 1

) ∣∣∣∣ z

z − 1

∣∣∣∣ < 1 (3.9)

which is also known as Euler’s second identity, we have, by means of equation (2.9), that

z 3F2(a, 1, 1; c, 2; z) = lim
b→1

(c − 1)

(a − 1)(b − 1)

×
[
(1 − z)−(b−1)

2F1

(
c − a, b − 1; c − 1; z

z − 1

)
− 1

]
.

Using the identity

(1 − z)−(b−1) = exp[−(b − 1) log(1 − z)]

and the series representation

2F1

(
c − a, b − 1; c − 1; z

z − 1

)
=

∞∑
n=0

(c − a)n(b − 1)n
(c − 1)n n!

(
z

z − 1

)n

= 1 +
∞∑
n=1

(c − a)n(b − 1)n
(c − 1)n n!

(
z

z − 1

)n

we have

z 3F2(a, 1, 1; c, 2; z) = lim
b→1

(c − 1)

(a − 1)(b − 1)

×
[{

1 − (b − 1) log(1 − z) + 1
2 (b − 1)2[log(1 − z)]2 + O(b − 1)3

}

×
{

1 +
∞∑
n=1

(c − a)n(b − 1)n
(c − 1)n n!

(
z

z − 1

)n
}

− 1

]
.
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Further, since

∞∑
n=1

(c − a)n(b − 1)n
(c − 1)nn!

(
z

z − 1

)n

=
∞∑
n=0

(c − a)n+1(b − 1)n+1

(c − 1)n+1(n + 1)!

(
z

z − 1

)n+1

= (c − a)(b − 1)

(c − 1)

(
z

z − 1

) ∞∑
n=0

(c − a + 1)n(b)n(1)n
(c)n(2)nn!

(
z

z − 1

)n

= (c − a)(b − 1)

(c − 1)

(
z

z − 1

)
3F2

(
c − a + 1, b, 1; c, 2; z

z − 1

)

where we implement (a)n+1 = a(a + 1)n and the series representation of 3F2 by means of
equation (1.15). Thus we have

z 3F2(a, 1, 1; c, 2; z) = lim
b→1

(c − 1)

(a − 1)(b − 1)

[
(c − a)(b − 1)

(c − 1)

(
z

z − 1

)

× 3F2

(
c − a + 1, b, 1; c, 2; z

z − 1

)
− (b − 1) log(1 − z)

− (c − a)(b − 1)2

(c − 1)

(
z

z − 1

)
log(1 − z)

× 3F2

(
2 − α

2
, b, 1; 2, 2; z

z − 1

)
+ O(b − 1)2

]

= (c − 1)

(a − 1)

[
(c − a)

(c − 1)

(
z

z − 1

)
3F2

(
c − a + 1, 1, 1; c, 2; z

z − 1

)

− log(1 − z)

]
.

This proves the lemma. �

As a direct application of this lemma, we have for a = 1 + α
2 and c = 2,

z 3F2

(
1 +

α

2
, 1, 1; 2, 2; z

)
= 2

α

[(
1 − α

2

) z

z − 1
3F2

(
c − a + 1, 1; 2, 2; z

z − 1

)

− log(1 − z)

] ∣∣∣∣ z

z − 1

∣∣∣∣ < 1. (3.10)

For the purpose of our applications, where we have z = 1 − x2

t
for t = c + iy, we must note∣∣∣∣ z

z − 1

∣∣∣∣
2

=
(

z

z − 1

) (
z

z − 1

)
< 1

which leads to �(z) < 1
2 . However, the real part of z = 1 − x2

c+iy = 1 − x2(c−iy)
c2+y2 is

1 − x2c

c2 + y2
<

1

2
→ 1

2
<

x2c

c2 + y2
<

x2

c

that is to say c
2 < x2, which does not contradict our requirement as given by equation (2.5).

Therefore, lemma 2 can be used with arbitrary values of α provided that α < 2γ . However,
for 2 − α

2 = −m, m = 0, 1, 2, . . ., the series 3F2 on the right-hand side of equation (3.10)
terminates and the convergence problem does not arise. In this case we have:
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Lemma 3. For 2 − α
2 = −m, m = 0, 1, 2, . . . , we have

∞∑
n=1

(
α
2

)
n

n

1

n! 1F1(−n, γ, x2) =
(

1 − α

2

) �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)

× 3F2

(
2 − α

2
, 1, 1; 2, 2; 1 − t

x2

)
dt + ψ(γ ) − log x2. (3.11)

Proof. Using lemma 2 and the fact that z = 1 − x2

t
, equation (2.9) leads to

∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ, x2) =

(
1 − α

2

) �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)

× 3F2

(
2 − α

2
, 1, 1; 2, 2; 1 − t

x2

)
dt − �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ log

(
x2

t

)
dt .

(3.12)

The second integral on the right-hand side of equation (3.12) is already computed by means
of lemma 1 and leads to

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ log

(
x2

t

)
dt = log x2 − ψ(γ )

which completes the proof of the lemma. �

3.1. The case α = 4

In this case 2 − α
2 = 0 and lemma 3 leads to

∞∑
n=1

(2)n
n n!

1F1(−n, γ, x2) = −�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)
dt + ψ(γ ) − log x2

= −�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ dt +

1

x2

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ+1dt + ψ(γ ) − log x2

= γ − 1

x2
− 1 + ψ(γ ) − log x2 γ > 2 (3.1.1)

where we invoke equation (3.2). There is, indeed, an independent confirmation for this result.
Since (2)n = (1 + n)(1)n, the infinite sum in (1.13), reads

∞∑
n=1

1 + n

n
1F1(−n; γ ; x2) =

∞∑
n=1

1

n
1F1(−n; γ ; x2) +

∞∑
n=1

1F1(−n; γ ; x2). (3.1.2)

The first series on the right-hand side is summable by means of Toscano’s result [7] (regardless
of the integral representation). For the second sum on the right-hand side, we refer to
Buchholz’s identity [9],

∞∑
n=0

(−ν)n�(γ + ν + 1)

�(n + γ + 1)
L(γ )
n (y) = yν γ + ν > −1 ν �= 0, 1, 2, . . . . (3.1.3)

Using equation (3.5), we have
∞∑
n=0

(−ν)n�(γ + ν + 1)

n!�(γ + 1)
1F1(−n; γ + 1; y) = yν γ + ν > −1. (3.1.4)
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Setting ν = −1, we get
∞∑
n=0

1F1(−n; γ + 1; y) = γy−1 γ > 0

or
∞∑
n=1

1F1(−n; γ ; x2) = γ − 1

x2
− 1 γ > 1 (3.1.5)

and thus
∞∑
n=1

(2)n
n

1

n!
1F1(−n; γ ; x2) = ψ(γ ) − log x2 +

γ − 1

x2
− 1

which confirms our result as given by equation (3.1.1).

3.2. The case α = 6

By means of equation (3.10), we have
∞∑
n=1

(3)n
n n!

1F1(−n, γ, x2)

= − 2
�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)(
1 − 1

4

(
1 − t

x2

))
dt + ψ(γ ) − log x2

= �(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
−3

2
+

t

x2
+

t2

2x4

)
dt + ψ(γ ) − log x2

= −3

2

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ dt +

1

x2

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ+1 dt

+
1

2x4

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ+2 dt + ψ(γ ) − log x2

= − 3

2
+

1

x2

�(γ )

�(γ − 1)
+

1

2x4

�(γ )

�(γ − 2)
+ ψ(γ ) − log x2

= − 3

2
+
γ − 1

x2
+
(γ − 1)(γ − 2)

2x4
+ ψ(γ ) − log x2 γ > 3 (3.2.1)

where we invoke equation (3.2). These results can also be confirmed by an independent proof.
Since (3)n = 1

2 (n
2 + 3n + 2)(1)n, the infinite series (1.13) becomes in this case

∞∑
n=1

(3)n
n

1

n!
1F1(−n; γ ; x2) = 1

2

∞∑
n=1

n 1F1(−n; γ ; x2)

+
3

2

∞∑
n=1

1F1(−n; γ ; x2) +
∞∑
n=1

1

n
1F1(−n; γ ; x2).

The second and third series on the right-hand side are summable by means of equations (3.1.5)
and (3.6), respectively, regardless of the integral representation. For the first series on the
right-hand side, it is enough to take ν = −2 in equation (3.1.4) to conclude that

∞∑
n=1

n 1F1(−n; γ ; x2) = (γ − 1)(γ − 2)

x4
− γ − 1

x2
γ > 2. (3.2.2)
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This leads to
∞∑
n=1

(3)n
n

1

n! 1F1(−n; γ ; x2) = γ − 1

x2
− 3

2
+
(γ − 1)(γ − 2)

2x4
− log x2 + ψ(γ ) γ > 3.

4. General case

The results just mentioned for α = 4 and α = 6 can be generalized indeed to any α such that
2 − α

2 = −m,m = 0, 1, 2, . . ..

Lemma 4. For 2 − α
2 = −m, m = 0, 1, 2, . . . and γ > α

2 , we have
∞∑
n=1

(
α
2

)
n

n n!
1F1(−n; γ ; x2) = ψ(γ ) − log x2 − (m + 1)

m∑
k=0

(−m)k(1)k
(2)k(2)k

×
[

2F0

(
−k, 1 − γ ; −; − 1

x2

)
− γ − 1

x2 2F0

(
−k, 2 − γ ; −; − 1

x2

)]
. (4.1)

Proof. Using lemma 3, we have for 2 − α
2 = −m, m = 0, 1, 2, . . .,

∞∑
n=1

(
α
2

)
n

n

1

n!
1F1(−n, γ, x2) = ψ(γ ) − log x2 − (m + 1)

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)

× 3F2

(
−m, 1, 1; 2, 2; 1 − t

x2

)
dt .

The function 3F2
( − m, 1, 1; 2, 2; 1 − t

x2

)
is a terminated series, specifically a polynomial of

degree m, and therefore we may integrate term by term using the series representation of 3F2.
We have

Iγm(x) = −(m + 1)
�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)
3F2

(
−m, 1, 1; 2, 2; 1 − t

x2

)
dt

= −(m + 1)
�(γ )

2π i

m∑
k=0

(−m)k(1)k
(2)k(2)k

[∫ c+i∞

c−i∞
et t−γ

(
1 − t

x2

)k

dt

− 1

x2

∫ c+i∞

c−i∞
et t−γ+1

(
1 − t

x2

)k

dt

]
.

Since (
1 − t

x2

)k

=
k∑

l=0

(−k)l

l!

(
t

x2

)l

, finite number of terms,

we have

Iγm(x) = −(m + 1)
m∑

k=0

(−m)k(1)k
(2)k(2)k

[
k∑

l=0

(−k)l

l!

1

x2l

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ+l dt

−
k∑

l=0

(−k)l

l!

1

x2l+2

�(γ )

2π i

∫ c+i∞

c−i∞
et t−γ+l+1 dt

]

= −(m + 1)
m∑
k=0

(−m)k(1)k
(2)k(2)k

[
k∑

l=0

(−k)l

l!

1

x2l

�(γ )

�(γ − l)

−
k∑

l=0

(−k)l

l!

1

x2l+2

�(γ )

�(γ − l − 1)

]
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where we have used equation (3.2) for γ > l + 1. From the identity �(γ − l) = �(γ )(γ )−l =
�(γ ) (−1)l

(1−γ )l
and �(γ − l − 1) = �(γ − 1)(γ − 1)−l = �(γ − 1) (−1)l

(2−γ )l
, we have now

Iγm(x) = −(m + 1)
m∑

k=0

(−m)k(1)k
(2)k(2)k

[
k∑

l=0

(−k)l(1 − γ )l

l!

(
− 1

x2

)l

− (γ − 1)

x2

k∑
l=0

(−k)l(2 − γ )l

l!

(
− 1

x2

)l
]

which finally leads to

Iγm(x) = −(m + 1)
m∑

k=0

(−m)k(1)k
(2)k(2)k

[
2F0

(
−k, 1 − γ ; −; − 1

x2

)

− (γ − 1)

x2 2F0

(
−k, 2 − γ ; −; − 1

x2

)]

by means of equation (1.15). �

The significance of this lemma is that the infinite series of equation (2.9) can now be
replaced by a finite series that is much easier to calculate. To illustrate the use of this lemma,
we shall now find the infinite series of equation (2.9) for the case α = 8, i.e. m = 2, since

∞∑
n=1

(4)n
n n! 1F1(−n; γ ; x2) = ψ(γ ) − log x2 − 3

2∑
k=0

(−m)k(1)k
(2)k(2)k

×
[

2F0

(
−k, 1 − γ ; −; − 1

x2

)
− γ − 1

x2 2F0

(
−k, 2 − γ ; −; − 1

x2

) ]

and since

2F0

(
0, 1 − γ ; −; − 1

x2

)
= 1

2F0

(
−1, 1 − γ ; −; − 1

x2

)
= 1 − (γ − 1)

x2

2F0

(
−2, 1 − γ ; −; − 1

x2

)
= 1 − 2(γ − 1)

x2
+
(γ − 1)(γ − 2)

x4

and similarly for 2F0
( − k, 2 − γ ; −; − 1

x2

)
, k = 0, 1, 2. It is a straightforward calculation to

find a closed-form sum for the infinite series (2.9) for α = 8 which leads in this case to

∞∑
n=1

(4)n
n n!

1F1(−n; γ ; x2) = ψ(γ ) − log x2 − 11

6
+
(γ − 1)(γ − 2)(γ − 3)

3x6

+
(γ − 1)(γ − 2)

2x4
+
(γ − 1)

x2
(4.2)

valid for γ > 4. It is interesting to mention here that the result of lemma 4 can be written in
terms of the well-known associated Laguerre polynomials. Indeed, from the identity [10]

(−1)n La−n
k (y) = yn

n!
2F0

(
−n,−a; −; − 1

y

)
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the result of lemma 4 can be written as
∞∑
n=1

(
α
2

)
n

n n!
1F1(−n; γ ; x2) = ψ(γ ) − log x2 − (m + 1)

m∑
k=0

(−m)k

(k + 1)2

(
− 1

x2

)k

×
[
L
γ−1−k

k (x2) − (γ − 1)

x2
L
γ−2−k

k (x2)

]
(4.3)

for α
2 = 2 + m m = 0, 1, 2, . . ..

5. Concluding remarks

It is important to note that for x = 0, the infinite series (1.13) for α � 2 indeed diverges. This
follows from the fact that 1F1(−n; γ ; 0) = 1 and

∞∑
n=1

(
α
2

)
n

n

1

n!
= α

2

∞∑
n=0

(1 + α
2 )n(1)n
(2)n

(1)n
(2)n n!

= α

2
3F2

(
1 +

α

2
, 1, 1; 2, 2; 1

)
which is absolutely convergent for α < 2. Therefore, for our results concerning α = 2, 4, . . .
and for the integral representation (2.9) in general, we must consider x > 0. The divergence of
the infinite series in the expression of the first-order perturbation correction of the wavefunction
(1.12) as x → 0 is indeed controlled by the coefficient term xγ−1/2 as well as by the coefficient
e−x2/2 for x → ∞. To illustrate the point further, we consider the case α = 2. In this case
the infinite series in equation (1.12) is summable by means of lemma 1 and the first-order
perturbation correction now reads

ψ
(1)
0 (x) = 1√

2

1

(γ − 1)
√
�(γ )

xγ− 1
2 e− x2

2
[
log x − 1

2ψ(γ )
]

γ > 1. (5.1)

Since lim
x→0

xγ− 1
2 log x = 0 for γ > 1, we have ψ

(1)
0 (0) = 0. Consequently, the closed-

form sums of the infinite series (1.13) contribute for intermediate values 0 < x < ∞ of the
wavefunction rather than the boundaries.

The question posed by Aguillera-Navarro and Guardiola [1] concerning a special
summation formula for equation (1.2) in the case α = 2 can now be answered with the
aid of lemma 1, which leads to

∞∑
n=1

1

n
1F1

(−n; 3
2 ; x2

) = ψ
(

3
2

) − log x2 (5.2)

and the first-order perturbation correction is given by means of equation (5.1) as

ψ
(1)
0 (x) = 2π−1/4x e− x2

2
[
log x − 1

2ψ
(

3
2

)]
(5.3)

which matches the first-order perturbation correction expansion, in powers of λ, of the exact
wavefunction ψ0(x), that is equation (1.6).

The condition γ > α
2 , α = 2, 4, 6, . . . imposed on the closed-form sums is too strong,

for they are indeed valid for weaker conditions. For example,
∞∑
n=1

1

n
1F1(−n, γ, x2) = ψ(γ ) − log x2 valid for all γ > 0

∞∑
n=1

n + 1

n
1F1(−n, γ, x2) = γ − 1

x2
− 1 + ψ(γ ) − log x2 valid for all γ > 1
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∞∑
n=1

1
2 (n

2 + 3n + 2)

n
1F1(−n, γ, x2) = −3

2
+
γ − 1

x2
+
(γ − 1)(γ − 2)

2x4

+ψ(γ ) − log x2 valid for all γ > 2.

However, the condition has been imposed in order to meet the matrix elements’ convergence
requirements.
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